Oxford University Press Inc, 2010. — 394 p. — ISBN: 978–0–19–953262–9.
Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics. The book covers the usual topics, such as Gaussian beams, cavities, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. It includes such practical matters as the enhancement of nonlinear processes in a build-up cavity, impedance matching into a cavity, laser frequency stabilization (including servomechanism theory), astigmatism in ring cavities, and atomic/molecular spectroscopic techniques for the generation of a discriminant for laser frequency locking. A number of very recent developments are discussed, such as fiber lasers and frequency metrology using femtosecond lasers. Problem sets are included at the end of each chapter.
This book is based upon a series of lectures which I gave for a graduate level class in quantum electronics in the University of Washington physics department. I assumed a working knowledge of intermediate electromagnetic theory, quantum mechanics and optics. I took a slightly different approach from most books and courses on the subject by deliberately slanting the material so that it would be more relevant to atomic physics experimentalists than, perhaps, to workers in the telecommunications industry.
As a result of my experimental atomic physics orientation, I have included topics not usually found in traditional texts on quantum electronics. An example of this is the application of nonlinear optics to the synthesis of coherent radiation in regions of the spectrum where lasers don’t work very well or at all. Most books cover the theory of second harmonic generation, sum frequency mixing and parametric processes, but avoid discussions of details of a practical frequency synthesis system. We therefore discuss such matters as the optimum cavity geometry for “enhancement” of nonlinear processes, “impedance matching” into the cavity, assessment and correction of cavity astigmatism and practical techniques for mode-matching into the cavity. These issues receive scant attention in most books on quantum electronics.
Another area not discussed in most texts is the frequency stabilization of lasers to cavities and of cavities to lasers. The former situation is encountered when one constructs a frequency standard or seeks to observe an atomic transition over long periods of time. The latter is a necessary condition for the use of a build-up cavity in nonlinear frequency synthesis. Both approaches require some knowledge of control
system theory, and a review of this subject is provided. In addition, two important techniques for generating a “discriminant” for frequency locking are discussed.
The remainder of the book covers topics in a manner which is similar to that of other textbooks on quantum electronics. Thus, we provide a fairly conventional discussion of Guassian beams, “standing-wave” cavities, continuous wave laser theory, electro-optical and acousto-optical modulation and some nonlinear optics theory.
There is no formal treatment of optical waveguides or fibers even though they are used in several of the devices discussed in the text; there is a comprehensive and excellent literature on these subjects and I felt that an additional treatment would do little to enhance the reader’s understanding of the devices discussed in this text.